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Abstract 

The Sternheimer function y(r) describes the shielding/ 
antishielding of the electric field gradient (EFG) at the 
nuclear position due to polarization induced in the 
atomic density by the quadrupolar components of the 
density distribution. The functions for Fe, Fe 2+ and 
Fe 3+ have been derived by means of Sternheimer's 
procedure [Sternheimer (1986). Z. Naturforsch. Teil A, 
41, 24-36], using a finite-difference method for solving 
the radial equations for the perturbed wave functions and 
numerical integration for the calculation of y(r). The 
shielding factors R, due to the contributions from the 
electron density of the atom at the nucleus of which the 
EFG is being considered (the 'central contributions'), 
are derived from the y functions. Results are given for 
near-Hartree-Fock atomic and ionic wavefunctions 
[Clementi & Roetti (1974). At. Data Nucl. Data 
Tables, 14, 177-478]. Contributions to the shielding 
from the core and valence electrons are separated. Since 
the X-ray multipole formalism describes a flexible 
valence shell but uses a frozen core, only ?,~re and R c°re 
are used in the calculation of M6ssbauer splittings from 
the experimental charge densities. The effect on the 
shielding of X-ray-determined radial expansion/con- 
traction of the valence shells [Coppens, Guru Row, 
Leung, Stevens, Becker & Yang (1979). Acta Cryst. 
A35, 63-72] is evaluated. The combination of spectro- 
scopic nuclear quadrupole splittings and X-ray charge 
densities on iron pyrite (FeS2), sodium nitroprusside 
{[Na2Fe(NO)(CN)s].2H20} and [Fe(TPP)(pyridyl)2 ] 
leads to unweighted and weighted average values for 
Q(57Fem) of 0.12 (3) and 0.11 (2) x 10 -28 m 2, respec- 
tively, when the core shielding factors are used. 

1. Introduction 

Accurate X-ray diffraction data can provide the detailed 
charge distribution in a crystal and therefore electro- 
static properties such as molecular moments, the 
electrostatic potential and its derivatives. Many of 
these quantities are also accessible by theoretical and 
other experimental techniques. Among the latter are 

M6ssbauer and nuclear quadrupole resonance, which 
are related to the electric field gradient (EFG) tensor 
elements through the quadrupole moment Q of the 
excited iron nucleus 57Fe". Comparison of the X-ray 
and spectroscopic results provides a mutual check on 
the procedures used in each method and gives informa- 
tion on the value of the nuclear quadrupole moment. It 
also establishes the interpretation of the spectroscopi- 
cally observed hyperfine splittings in terms of the 
detailed charge-density distribution. 

The elements of the traceless electric field gradient 
tensor, at the position in a crystal defined by r', can be 
written as 

vEtotalz tx 
~, ( r ) =  f{ [pN(r ) -  pe(r)](3x~x, I r -  r'lZ3,~t~) 

x Ir - r'1-5} dr, ( la) 

where 1 < a ,  / 3 < 3 ,  x~, xt3 are the oeth and flth 
components of r -  r ' ,  PN and pe are the nuclear and 
electronic charge densities, respectively, and 8 is the 
Kronecker delta. 

Taking into account the polarization of the electrons 
induced by both the nuclear and the electronic 
quadrupolar features of the density distribution 
(Lauer, Marathe & Trautwein, 1979), the expression 
for the EFG at the nuclear position becomes (Srivas- 
tava, Bhargava, Iyengar & Thosar, 1983; Marathe & 
Trautwein, 1983) 

,~Etotal- r. 

= f{[pN(r) - p~(r)](3x~x, - Ir - r'128~a)/Ir - r'l 5} 

x [1 - y ( l r -  r'l)] dr, (lb) 

where v(r) is the Sternheimer shielding/antishielding 
function (Sternheimer, 1986), which depends on the 
polarizing distribution at r and on the wavefunction of 
the electrons that are polarized. The nuclear charge 
density PN excludes the charge of the nucleus at which 
the EFG is being evaluated. A positive/negative value 
of y(r) corresponds to shielding/antishielding of the 
nucleus, respectively, v(r) consists of two components, 

yt°tal(r)--- yc°re(r)+ yvalence(r), (2) 

© 1996 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

Acta Crystallographica Section A 
ISSN 0108-7673 © 1996 



ZHENGWEI SU AND PHILIP COPPENS 749 

representing the polarization of the core and valence 
shells, respectively. The polarization of the charge 
density must be accounted for in the calculation of the 
EFG at the nuclear position if it is not represented by the 
basis set used in the theory or the modeling of the 
experiment. 

In the analysis of the X-ray data with the aspherical- 
atom multipole formalism, further described below 
(Hansen & Coppens, 1978; Coppens, 1993; Coppens, 
1997), the charge density is subdivided into multipolar 
functions centered on the atomic positions. Following 
earlier practice (Su & Coppens, 1992), we refer to the 
peripheral contributions as those due to the charge 
density centered on atoms other than the one at the 
nucleus of which the EFG is being evaluated and the 
central component as that due to the density on the atom 
itself. 

The effect of the peripheral charge density is often 
represented by },~, defined as 

y~ = lim y(r), (3) 
r----~ OG 

while for the central component a density-weighted 
average R of y(r) is used. These lead to the simplified 
expression 

V-,.~total.- t-. r , . . -~centra l ,  t . .  ~ t r ) = v ~  t r ) t l - R )  
(4) 

peripheral  t + VE~  (r)(I  - ?,~), 

in which R and ?% are referred to as the Sternheimer 
nuclear quadrupole shieldinglantishielding factors. 
Expression (4) is a good approximation to ( I )  i f  there 
is little overlap between the central atom and its 
neighbors. 

In the aspherical-atom formalism, the atomic density 
for each of the atoms is described as (Hansen & 
Coppens, 1978; Coppens, 1993) 

Patom~Ar) = Pc Pcore(r) + K3pv pv(Kr) 
lmax 1 

-I- K '3 ~,  ~,  ~,  PtmpRnt(tc'r)dtmp(O, qg), 
l = 0  m = 0  p 

(5) 

where p~o~(r) and p~(Kr) are normalized to one 
electron, p = + or - ,  K and K' are valence-shell 
expansion/contraction parameters, the density functions 
dtm p are real spherical harmonics with a normalization 
appropriate for density functions, P,, and Ptmp are 
electron population parameters and Rm(x'r ) are radial 
functions, which for light atoms are usually expressed 
in terms of Slater-type functions. For transition-metal 
atoms, we use the same Hartree-Fock-type radial 
functions for the spherical valence term and the 
aspherical deformation functions, as the asphericity is 
mainly due to preferential occupancy of the valence 
orbitals, rather than to covalent bonding (Coppens, 

1992). This also means that x and r '  are taken as being 
equal for transition-metal atoms. 

According to (5), the electronic density of an atom in 
the crystal consists of an unperturbed core-electron 
density, a valence-shell spherical density modified by a 
radial expansion/contraction parameter r (Coppens, 
Guru Row, Leung, Stevens, Becker & Yang, 1979) 
and higher-order aspherical components described by 
an expansion of spherical harmonic functions. The 
adjustable charge-density parameters x, x', Pv and Pimp 
are derived by least-squares fitting of the model to the 
experimental X-ray structure factors. The aspherical 
dl~ functions include the quadrupolar density com- 

X-71~,central ponents (l = 2), which are the contributors to -,_,~ . 
Since the diffraction data contain virtually no 

information on the asphericities of the core-electron 
distribution, the diffraction model contains a frozen 
core. Thus, core-polarization effects are not accounted 
for in the model. On the other hand, the valence shell's 
asphericity is incorporated in the model so its polariza- 
tion will be reflected in the experimental populations. It 
is therefore consistent to use yc°re(r) and R ~°re, rather 
than yt°tal(r) and R t°tal in (2) and (4). As pointed out by 
Lauer, Marathe & Trautwein (1979), a similar situation 
exists for molecular-orbital (MO) and band-structure 
calculations in which the cores are frozen. The shielding 
factor R ~°re will depend on the expansion/contraction 
parameter x of the polarizing valence density. 

We introduce in §2 a numerical method for solving 
the differential equations involved in Sternheimer's 
procedure for the evaluation of y(r). Results are 
summarized in §3. In ~ ,  we briefly outline the 
evaluation of the EFG from X-ray charge density, the 
results of which for a number of Fell-containing 
compounds are presented in §5. §6 discusses the 
estimation of the nuclear quadrupole moment of the 
excited state of the Fe atom, 57Fern. 

2. Sternheimer's procedure for the evaluation of 7(r) 

Consider the first-order perturbation equation 

(H0 + H1)(~P0 + lPl) = (E0 + EI)0P0 + ~Pl), (6) 

where H 0 and ~P0 are the Hamiltonian and the 
wavefunction of the unperturbed system, which we 
approximate as the free atom or ion, and H 1 and ~Pl the 
corresponding quantities with the perturbation. As 
shown by Sternheimer (1966), the shielding factors 
can be evaluated by considering either the polarizing 
effect of the nuclear quadrupole moment or that of the 
charge distribution external to the nucleus. A nuclear 
quadrupole moment Q induces a quadrupole moment in 
a polarizable charge distribution, which in the expres- 
sion for the quadrupole splitting is represented by the 
perturbation operator 

H 1 = -Q(3  cos 2 0 - 1)/4r 3, (7) 
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where atomic units have been used (Sternheimer, 1950). 
In (7), the quantity in brackets is twice the Legendre 
polynomial P2(cos 0), r is the length of a vector from the 
nucleus to a point at which the wavefunction is defined 
and 0 is the angle between that vector and the axis of the 
nuclear quadrupole moment. 

Sternheimer has shown that (6) and (7) lead, for a 
shell with quantum numbers n and l for 1# o and n and l' 
for ~Pl, to the radial expression (Sternheimer, 1986) 

~ d  2 l'(l' + 1) - 1(l + 1) 1 d2Uonl(r)~ 
-d-~r 2-b r 2 +--Uo,n t ~ --)ul,nl-->l'(r) 
= Uo.,a(llr 3 - (r-3)nl t~ll,), (8)  

where UO.nl(r ) is r times the radial part of the n, l 
component of lp 0, Ul,nl~l,(r) is r times the radial part of 
the corresponding component of ~Pi- 1 ' =  l, 1-4-2 for 
0 < l < 2 a n d l ' = l , l + 2 , 1 - 2 f o r l > 2 .  

For the radial excitations (l = l'), the excited-state 
functions u i must be orthogonalized to the ground-state 
function 

where 

Utl.nl~l(r) : ul,,t__,t(r ) - a Uo,nl(r ), (9) 

OO 

a = f Ul,nl_+l(r)Uo,nl(r)dr. (10) 
0 

For the angular excitations (l # l'), orthogonalization 
is inherent in the change in quantum number. Thus, 

Utl.nl~l,(r) = Ul.nl_~l,(r ) with l' = l + 2. (11) 

yn/=(r), the electrostatic contribution from one 
electron with quantum numbers nlm, is given by 
(Sternheimer, 1967) 

Ynlm(r) "-- E eli'. ~ ? UO,nl(r')U'l,nl--*l'(r') r'2 dr' 
1' I. 0 

+ ? f [Uo,.l(r')ui,.~__.,(r')/r'31dr" , (12a) 
r 

where 

and 

Cll, m = 4 (/~/i!)m) 2 (12b) 

lll TM ? P2(COS O)•lra(O)•l,m(O ) sin 0 dO. (12c) 
0 

Otto(O) are the normalized associated Legendre func- 
tions defined by 

Olm(O ) = {[(2l + 1)/2](l - m)!/( l  + m)!}l/EpT' / cos(P) 

(lEd) 

and 

P2(cos 8) = (3 cos 2 0 - 1)/2. (12e) 

Table 1. Values o f  the coefficient Ca--+ l') [--C(I'---> l)] 
in (13) f o r  y(r) 

l l' Excitation C(l ~ l') 
0 2 s ~ d 8/5 
1 1 p ~ p 48/25 
1 3 p --~ f 72/25 
2 2 d ~ d 16/7 
2 4 d ~ g 144/35 
3 3 f ~ f 224/75 
3 5 f ~ h 16/3 

The total electrostatic contribution to y(r) due to a 
filled nl shell (with 41-4-2 electrons) is obtained as a 
sum over the individual electron contributions 

( r 

l' t 0 

+ r 5 f[uo.,,l(r')u'l.nl~l,(r')/r'3]dr ' . (13) 
r 

Comparison of (12a) and (13), taking into account the 
spin degeneracy, gives for the coefficients C 

l 
C(I -+ l ' ) =  2 ~ Cll, m. (14) 

m = - - I  

Some values of C(l--+ l') are given in Table 1. 
C(l--~ l') is independent of n and C( l - - .  l ' ) =  
C(l' ~ l), as is evident from the preceding equations. 

The shielding factor R consists of a contribution R o, 
due to the electrostatic interaction, and a contribution 
Re, due to exchange interactions between electrons with 
the same spin quantum number, or 

R -- Ro + Re. (15) 

For polarization by the EFG of the electrons with 
quantum numbers nv, lv, 

RD,nl m = (y(r)r-3)valence/ (r-3)valence 
oo 

= (1/(r-3)ndv) f Ynlm(r)w~vlv(r)r -3 dr, (16) 
0 

where w~& is r times the radial part of the wavefunction 
of the valence electrons contributing to the EFG at the 
nuclear position, with quantum numbers n v and Iv; r -3 
is the interaction operator from the perturbation 
Hamiltonian Hi,  defined in (7). 

The contribution to R E due to the exchange between 
two electrons with different spin is 0. For parallel spins, 
the contribution is non-zero and given by 

O 0  

RE,ni~l, m = ~-~(bu, t~L/ (r-3),,d~) f Uo,.l(r ) W.vl~(r)gL(r ) dr 
L 0 

(17a) 

with 
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gL(r) = (1/r  TM) ) Utl,nl__.l,(r')Wnvlv (r')r" L dr" 
o 

o o  

"JI- : f Utl.nl_.+l,(r')Wnvlv(r') r'-L-I dr' (17b) 
r 

and 

bll, lv L --- 2c(2)(lm; l'm')c(L)(lm; lvmv)c(L)(l'm; lvmv) 

× [c(2)(l~m~; lvm~)] -1 (17c)  

with (Sternheimer, 1967) 

c(L)(lm; l'm') = [ 2 / ( 2 L  + 1)] 1/2 

x f O'~L -m'(0)O~/(0)O~t, (0) sin 0 d0. 
o 

(17d) 

The contribution to R e due to a filled nl shell is 
(Sternheimer, 1967) 

O 0  

[B(l ---> l'" Iv; L) /  (r-a)nflv] f Uo,,t(r)w, j vg i ( r  ) dr. 
L o 

(18) 

The coefficients B(l---> l'; lv;L) are summarized in 
Table 2. 

2.1. The numerical method 

We use the finite-difference method (Burden & 
Faires, 1989; Press, Flannery, Teukolsky & Vetterling, 
1986) in solving the differential equation (8). Analysis 
of  the limits of  both sides of (8) as r ---> 0 shows that the 
boundary conditions can be chosen as 

for / :r iO:  

ul(ro) = 0, ul(r o + rl) = 0; (19a) 

for l - -0 :  

ul(ro) -- ~ lim [Uo(r)/r], ul(r o + r 1) = 0. (19b) 
r---~ r o 

r 0 is a very small positive value, typically taken as 
1.0 x 10 -6 a.u.; r 1 is chosen to be sufficiently far away 
from the nucleus for the wavefunction to be essentially 
equal to zero. We have used rl -- 10.0a.u. and a step 
size of 2.0 x 10 -3 a.u. to obtain the numerical values of 
Ul, the excited-state radial functions at each of the 
points. The integrations in (10), (12a), (13), (16), (17a) 
and (17b) were performed using the composite Simpson 
formula as described in Burden & Faires (1989). 

Test calculations using different values of r 0, r~ and 
step size show the resulting values of y(r) and R to be 
accurate to 1% or better. 

P .  ° Table 2. Values of  B(l ~ l , lv,L [= B(l' ~ l;lv;L)] in 
(18) for  R e 

This table is an extension to the table given by Sternheimer (1967). 

l ~ l'; Iv; L B(nl---~l';lv;L) 
0 2 1 1 4/3 
1 1 1 0 4 
1 1 1 2 4/25 
1 3 1 2 36/25 
2 2 1 1 4/3 
2 2 1 3 12/49 
2 4 1 3 72/49 
3 3 1 2 24/25 
3 3 1 4 8/27 
3 5 1 4 40/27 
0 2 2 2 4/5 
1 1 2 1 28/25 
1 1 2 3 36/175 
1 3 2 1 12/25 
1 3 2 3 36/175 
2 2 2 0 4 
2 2 2 2 -12/49  
2 2 2 4 16/49 
2 4 2 2 144/245 
2 4 2 4 40/49 
3 3 2 1 48/25 
3 3 2 3 -88/225 
3 3 2 5 40/99 
3 5 2 3 40/63 
3 5 2 5 80/99 
0 2 3 3 4/7 
1 1 3 2 108/175 
1 1 3 4 4/21 
1 3 3 2 72/175 
1 3 3 4 4/7 
2 2 3 1 72/49 
2 2 3 3 -44/147 
2 2 3 5 500/1617 
2 4 3 1 12/49 
2 4 3 3 24/49 
2 4 3 5 300/539 
3 3 3 0 4 
3 3 3 2 76/225 
3 3 3 4 -4 /11  
3 5 3 2 20/63 
3 5 3 4 40/77 
3 5 3 6 700/1287 

3. 7(r) a n d  R for  the  F e  a t o m  in  v a r i o u s  i o n i z a t i o n  
s tates  

3.1 .  F e  e+ 

W e  use as the unperturbed w a v e f u n c t i o n s  the n e a r -  

H a r t r e e - F o c k  w a v e f u n c t i o n s  for the 5D ground state o f  
F e  2+ g i v e n  b y  C l e m e n t i  & Roe t t i  (1974) .  T a b l e s  3 a n d  4 

give the results for V~ and R, while numerical values 
for y(r) are listed in Table S I.* The functions vc°re(r) 
and yc°re+valence(r) are shown in Fig. 1. 

* The supplementary material giving y(r) for Fe 2÷ from core and 
valence electrons has been deposited with the IUCr (Reference: 
BK0033). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. 
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Table 3. Sternheimer nuclear quadrupole factor R and 
its direct (Ro) and exchange (Re) contributions for free 

Fez + 

Excitations Ro Re R = R o + R e 

Is --* d 0.0257 - 0 . 0 0 0 8  0.0250 
2s ~ d 0.0433 - 0 . 0 1 1 7  0.0316 
3s ~ d 0.0189 -0 .0071  0.0118 
2p - -~f  0.0640 - 0 .0135  0.0506 
3p ~ f 0.0328 -0 .0121  0.0207 
2p --, p - 0 . 3 1 7 8  0.2437 - 0 . 0 7 4 2  
3p- -~p  0.1814 - 0 . 1 6 6 4  0.0150 
3d --, s - 0 . 0 0 9 6  0.0000 - 0 . 0 0 9 6  
3d --, g 0.0178 0.0000 0.0178 
3d - ,  d 0.0361 0.0000 0.0361 

Table 4. Sternheimer nuclear quadrupole factors R and 
y~ for Fe, Fe z+ and Fe s+, all with x = 1.0 

R R ~,~ y~ 
This work Literature This work Literature 

Fe, (r-3)3a = 4.979a.u.  
Total core 
Total valence* 
Total core + valence 

Fe 2+, (r-3)3a = 5.086 a.u. 
Total core 

Total valence 

Total core + valence 

0.0730 - 8 . 9 3 3  
0.0521 - 1 . 2 9 4  
0.1251 - 1 0 . 2 2 7  

- 8 . 2 6  ~ 

0.0704 0.0770 ~ -8 .681  - 8 . 6 9 0  ~ 
• 0.0754 b - 8 . 0 7  ~ 

0.0442 0.0536 ° - 2 . 3 5 4  - 2 . 2 8 2  ~ 
0.0508 b 

0.1146 0.1206 ~ - 1 1 . 0 3 5  - 1 0 . 9 7 2  ~ 
0.1262 b 

Fe 3+, ( r - 3 ) ~ / -  5.728 a.u. 
Total core - 7 . 9 7 4  - 7 . 4 3  ~ 
Total valence - 1.453 
Total core + valence - 9 . 4 2 7  - 9 . 1 4  a 

- 9 . 6 4  • 

References: (a) Sternheimer (1967); (b) Lauer, Marathe & Trautwein 
(1979); (c) Lauer, Marathe & Trautwein (1980); (d) Sternheimer 
(1963); (e) Sen & Narasimhan (1976). *Including the two 4s 
electrons. 

i 

o 

-2 

-4 

-6 

-8 

10 ~ 

. . . . . . . . . . . . . . . . . . . . . . . . .  

i i i i i 

I I 2 3 4 5 6 7 8 9 10 

t (L~.) 

Fig. 1. Sternheimer function y(r) for Fe 2+. Solid line: contribution 
due to polarization of  the core electrons, t,~t~(r); dashed line: 
contribution due to polarization of  the core and valence electrons, 
y'°tal(r). 

As pointed out by Sternheimer (1972), the contribu- 
tions to R o and Re from the excitation of the valence 3d 
shell can be treated as the interaction of one 3d electron 
with the remaining five 3d electrons with opposite 
spins. Thus, there is no contribution to R e from 
3 d ~ s ,  3 d ~ d  and 3 d ~ g  excitations, and the 
contributions to R D from these five valence electrons 
is half that of a filled 3d shell. 

A second calculation, not separately reported here, 
using the low-spin ~F excited-state wavefunction for the 
Fe 2+ ion, leads to shielding factors very similar to those 
for the 5D ground state. This result supports the 
application of the free-ion core-shielding factors to 
iron in molecular complexes. 

3.1.1. Dependency of R and y~ on K. For non-unity 
values of x in (5), the radial part of the electron-density 
function, and thus the radial part of the wavefunction, is 
modified relative to the free-atom functions. If the basis- 
set functions are Slater type, the radial part of the 
wavefunction with quantum numbers n, l for the 
unperturbed atom, 

(2n!)-°5(2¢)("+° 5)r "-l exp( - ( r ) ,  (20a) 

becomes 

(2n!)-°5(2x()"+°5r "-1 exp(-x( r ) .  (20b) 

Because of the flexibility of the valence shell in the 
multipole model, R valence and yvalance(r) do not enter the 
equations relevant to the X-ray case. The core 
distribution is fixed at Xcor~ = 1 but /V °re, which 
represents the polarization of the core electrons by the 
valence distribution on the central atom, is a function of 
the x values of the valence shell. 

Values of/~D °re, /~E °re and their sum, g c°re, for Fe 2+ 
for a number of x values in the range 0.8-1.2 are 
summarized in Table 5. The values for Fe 2÷ in this 
range are well fitted (to about 1 in 104 ) by the 
polynomial 

Rc°r~(Fe 2+, x) = 1.0686 - 2.4955x + 2.06100~ 

- 0.56369x 3. (21) 

Expression (21) is illustrated in Fig. 2. 

3.2. Fe 3+ and Fe 

The calculation for Fe is the same as that for Fe 2+ 
except for the contribution of the 4s 2 electrons to y(r) 
and R. R is not defined for a free Fe 3+ in its ground (6S) 
state because of the absence of asphericity of the 
valence shell. 

The results are included in Table 4, while )/core for the 
three valence states is plotted in Fig. 3. Examination of 
the figure shows that 

IF~re(Fe)l > [y~re(Fe2+)l > [y~re(Fe3+)l, 



Z H E N G W E I  SU A N D  PHILIP  C O P P E N S  753 

Table 5. gc~ re, RCE °re and R .... f o r  Fe 2+ with different x 
values 

K 0.8 0.85 0.9 0.925 0.95 0.975 1.0 
(r-3)3a., * 2.604 3.123 3.708 4.025 4.360 4.714 5.086 

(a.u.) 
/~o °~ - 0 . 1 3 0  - 0 . 0 6 5 4  - 0 . 0 1 6 4  0 .0034 0 .0206 0.0355 0.0483 
nee °re 0.233 0 .1557 0.0975 0.0741 0 .0540 0 .0368 0.0221 
g c°re 0 .103 0.0903 0.0811 0.0775 0 .0746 0.0723 0 .0704 

x 1.025 1.05 1.075 1.1 1.15 1.20 
- 3  (r )3d., 5 .477 5.887 6.318 6 .769 7.735 8.788 
(a.u.) 

/~r~ 0 .0594 0 .0689 0 .0770 0 .0840 0 .0948 O. 1024 
/~e °~ 0 .0096 - 0 . 0 0 0 9  - 0 . 0 0 9 6  - 0 . 0 1 6 9  - 0 . 0 2 7 7  - 0 . 0 3 4 6  
R ':°re 0.0690 0 .0680 0 .0674 0.0671 0.0671 0 .0678 

• ( r - 3 ) 3 d . ~  : g3(r-3)3 d : 5.086X 3 ( a . u . ) .  

indicating that the polariziability of  the core density is 
reduced by an increase in oxidation number.  This is as 
expected from the increase in binding energy of  the 
electrons with oxidation state. 

m.m 0.1051 
m 0.1 ................. ;'. ................ , ................. : ................. , ................. : ................. 

13: 0 .09  ................. i .............................................................................. 

T o.o9 I- ................ ? ....... .x:: ...... i ................. i .................. ; ................. i . . . . . . . . . . . . . . . . .  

o.o  ................................. ............... i ................. i ................. i . . . . . . . . . . . . . . . . .  

o o , 4  ................ i ................. i ...... i ................. .................................. 

. . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . .  ........... ; ................. i . . . . . . . . . . . . . . . . .  
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Fig. 2. Dependence of the shielding factor Rc°re(Fe 2+) on the valence- 

shell expansion/contraction parameter x. 

- 1 0  I i i i i i 

r (Lu. )  

Fig. 3. Sternheimer functions V .. . .  (r) for Fe (dots), Fe 2+ (solid line) 
and Fe 3+ (dashed line). Curves  are for x = I. 

For all species, y~  is dominated by the antishielding 
radial excitations 3p--+ p and 2p--+ p.  The angular  
excitations are shielding except for 3d ---> s. 

The r dependence of  R~°re(Fe) is well fitted by a 
polynomial  similar to (21): 

Rc°re(Fe, K) = 1.1061 -- 2.5832X + 2.1352X 2 

-- 0.58519X 3. (22) 

4. Calculation of the EFG from the multipole 
description of the charge density 

The method for calculating the electric field gradient 
f rom the model density in (5) is described in the 
literature (Epstein & Swanton,  1982; Su & Coppens,  
1992; Su, 1993a). Only the quadrupolar  density 
components [l = 2 in (5)] contribute to the EFG com- 

k"71~central The central ponent due to the parent  atom, -~, t~  • 
contributions are given by 

V g x x  : + ( 3 / 5 ) ( y r P 2 2  + - 31/2p2o)(r-3 ) 
V E r y  = -  ( 3 / 5 ) ( 7 r P 2 2  + n t- 31/2p2o)(r-3 ) 
VEzz = + (6/5)(31/2P2o)(r-3) 
VExy = -t- ( 3 / 5)QrP22_ ) (r -3 ) 

VExz = + (3/5)(rrP21+)(r -3) 

(23) 

VEv z = + (3/5)(yre21_)(r-3), 
where ( r  - 3 )  is the expectation value for the density 
function used for the l = 2 term in (5). For  Fe 2+, ( r  - 3 )  

is listed in Table 5. 
The remainder  of  the crystal contributes to the 

Wlh"peripheral A density component  centered quantities . ~,~ . 
at RM, defined by 

exp( -~rM)  dl,m,p, (OrM , ~rM) (24) 

[where r M = r - R M, rM = Irgl and  dllmlpl(O, ~) is a 
real spherical-harmonic function], contributes to 

peripheral VEc, t~ ( R i )  a n  amount that contains a factor 

AN'I~'G'2(~' [RM--Ri l ) :  ~f[~o rU+2exp(-~r)jl~(Sr)dr] 

x jt2(SiRM - Ril)S 2 dS, (25) 

where l 2 = I11 -Jr- 21 . . . . .  I11 - 21. Jt are spherical Bessel 
functions of  order  l, and S is the dummy variable of 
integration. 

The expressions for As. h.t2,2 for N < 7 and l 1 < N are 
listed in the literature (Su & Coppens,  1994) and are 
incorporated in the p rogram M O L P R O P 9 3  (Su, 1993b) 
used for the EFG calculations. 

5. Application of the expressions 

In the present study, the expressions are applied to 
data sets on pyrite (FeS2) (Stevens, DeLucia  & 
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Table 6. Central and peripheral contributions to the EFG (a.u.) at the iron nuclear position in the three compounds 
studied 

FeS 2 

[Na2Fe(NO)(CN)5].2H20 

[Fe(TPP)(py)2] 

Central Peripheral 

( - 0 . O ( 2 1 )  0 ) (0.004(11) 0 ) 
--0.27(21) 0 ~ 0 0.004(11) 0 

0 0.54 (42) 0 --0.008 (22) 

0.95 (2) 0 ) 
0 0.95(2) 0 
0 0 -1.9(4) 

0.014(1) --0.002(1) 0.003(1)) 
-0.002(1) 0.014(1) --0.003(1) 

0.003 (1) -0.003(1) -0.028 (2) 

--0.60(15) 0 ) 
0 --0.60(15) 0 
0 0 1.2(3) 

0.016(5) -0.001 (4) 0.001 (4) 
-0.001 (4) 0.015(5) -0.002(4) ] 

0.001 (4) --0.002(4) -0.031 (10),] 

Table 7. Comparison of X-ray and MOssbauer quadrupole splittings for Fe It complexes, using Q = 0.15 × 10 -28 m 2 
to obtain the X-ray values 

Without Sternheimer correction With Sternheimer correction 
A b-'X'ray Ag~Sray AESQ7 VEu ~ ~QS VE= 

(a.u.) 0 (nun s -I) (a.u.) 17 (mm s -1) (mm s -1) 

FeS2* 0.54 (42) - -0.82 (64) 0.51 (39) - -0.76 (59) 4-0.634 (6) 
[Fe(NO)(CN)5] z- -1.9 (4) 0.002 (1) +2.9 (6) -2.0 (4) 0.019 (4) +3.0 (6) +1.717 (4) 
[Fe(TPP)(py)2] 1.17 (30) 0.017 (4) -1.8 (5) 0.78 (27) 0.02 (1) -1.2 (4) -t-1.15 (2) 

*References to X-ray charge density: FeS:: Stevens, DeLucia & Coppens (1980), new refinement of data. [Na2Fe(NO)(CN)s].2H20: 
Bolotovsky, Su, Darovsky & Coppens (1996), 100 K imaging-plate data set collected with synchrotron radiation. [Fe(TPP)(py)2]: Li (1989), Li, 
Coppens & Landrum (1988). 

Coppens, 1980), sodium nitroprusside {Na2[Fe(NO)- 
(CN)5 ] .2H20 } (Bolotovsky, Su, Darovsky & 
Coppens, 1996) and [Fe(TPP)(pyridyl)2] (Li, 1989; 
Li, Coppens & Landrum, 1988) (TPP=tetraphenyl- 
porphyrin). In all cases considered here, we have 
found the substitution of y~ for y(r) in the peripheral 
contribution adequate within 1%. This is the case 
even for sodium nitroprusside, which has the shortest 
metal-ligand distances of the compounds considered 
[ F e - - N =  1.668(1) A,]. 

In Table 6, the central and peripheral contributions to 
the EFG before the Sternheimer correction are listed. 
The Fe atom in FeS2 is located on a threefold axis, so all 
contributions are by necessity diagonal. Because of the 
local symmetry, this is also the case for the central 
contributions of the other two complexes. The periph- 
eral contributions are quite small but are enhanced by 
the antishielding. Table 7 lists the principal elements 
VEzz and the asymmetry parameters ri, defined as 

17 = (VE= - VEyy)/VEzz, (26) 

in which VE=, VErr, VE= are the principal elements of 
the EFG tensor in order of decreasing absolute value. 

The quadrupole splitting AEQs for 57Fe is given by 

AEQs : leVzzQ(57Fem)(1 -F 112/3) U2, (27a) 

where Vzz--VEzz and Q(57Fem) is the nuclear 
quadrupole moment for the nucleus in the excited 
state, which has a spin of 3/2. We initially use 
Q(57Fem) = 0.15 x 10 -28 m 2 (Lauer, Marathe & 
Trautwein, 1979; Ray & Das, 1977) but in the next 
section discuss the implication of the comparison of the 
spectroscopic and X-ray-derived values of AEQs. 

After conversion to the Doppler-speed unit (mm s -1), 
we obtain 

A b-,X-ray • --QS = --1.52 VEzz(1 + 02/3) 1/2, (27b) 

where VEzz is expressed in a.u. Table 7 lists the 
X ray values of A E ~  calculated from the X-ray data with 

and without inclusion of the shielding/antishielding 
effect of the core electrons. 

6. Estimation of Q(S7Fe") based on the X-ray results 

The nuclear quadrupole moment Q(57Fem) cannot be 
directly measured owing to the short lifetime of the 
excited nuclear state. Values ranging from 
-0.19 x 10 -28 to +0.44 x 10 -28 m 2 have been reported 
in the literature (Rusakov & Khramov, 1992). They are 
based either on models of the nuclear charge distribu- 
tion or on observed nuclear quadrupole splittings 
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Table 8. Values of  Q(57Fe m) calculated according to 
expresssion (28) in 10 -28 m 2 

No Sternheimer With Sternheimer 
correction correction 

FeS 2 0.12 (9) 0.13 (10) 
[Fe(TPP)(py) 2] 0.10 (3) 0.14 (3) 
[Fe(NO)(CN)5] 2- 0.09 (2) 0.09 (2) 
Straight average 0.10 (2) 0.12 (3) 
Weighted average 0.09 (2) 0.11 (2) 

combined with electronic structure calculations of 
various complexity. 

As pointed out by Tsirel 'son, Strel'tsov, Makarov & 
Ozerov (1987), an estimate of Q(57Fem) can be derived 
by comparing spectroscopic and X-ray-derived quadru- 
pole splittings. As the values o f  AEt~s ray are linearly 
dependent on a(57Fem), a best estimate of Q(57Fem) 
based on X-ray data derived with an initial value of 
Q(57Fem) = 0.15 x 10 -28 m 2 can be obtained from 

spec X-ray Q(57Fem) ~ 0.15 x 10 -28 m 2 x (AE~s /AEQs ), 

(28) 

A ]tTX-ray assuming AE~sP~ to have the same sign as "-'--'QS . The 
results are summarized in Table 8. 

When the shielding/antishielding effects of the core 
are not taken into account, the data in Table 7 lead to an 
unweighted average of Q(57Fem) = 0.10 (2) x 10 -28 m 2 

and a weighted average of 0.09 (2) x 10 -28 m 2 (Table 8). 
The corresponding numbers with shielding are 
0.12 (3) × 10 -28 and 0.11 (2) x 10 -28 m 2. The latter 
results, which take the polarization of the core into 
account, are within 1-2or of the value of 
0.14(2) x 10-28m 2 reported by Tsirel 'son et al. 
(1987), based on earlier X-ray data sets on sodium 
nitroprusside and Fe203, but omitting the shielding and 
antishielding effects due to the polarization of the core- 
electron density. 

Our results may be compared with the theoretical 
nuclear value of 0.177 x 10 -2s m 2 obtained by Bolotin, 
Stuchbery, Amos & Morrison (1978) and the much 
smaller value of 0.082 x 10 -28 m 2 of Duff, Mishra & 
Das (1981), which is based on spectroscopic observa- 
tions on FeCI 2 and FeBr 2 in a rare-gas matrix and 
theoretical electron-density distributions for the isolated 
molecules. The latter have been criticized by Ellis, 
Guenzburger & Jansen (1983) and by Dufek, Blaha & 
Schwarz (1995). The latter authors, from com- 
parison of spectroscopic values with EFG's  from 
linearized augmented plane-wave (LAPW) theoretical 
densities on a series of solids, obtain the value of 
0 .16+5% x 10 -28 m 2. 

7. Concluding remarks 

The separation of the nuclear shielding factors R into 
core and valence contributions allows their use in the 

calculation of the EFG from charge densities 
described by the multipole formalism. The quantita- 
tive comparison between X-ray and spectroscopic 
results requires accurate knowledge of the nuclear 
quadrupole moment of the excited state of 57Fern. But 
the two sets of results are consistent and can be used 
to derive a new value for 57Fem. Our value is 
somewhat lower than those from the most recent 
theoretical calculations, possibly as a result of 
unrecognized errors in the sodium nitroprusside 
experimental density, which led to the lowest estimate 
based on the X-ray data (Table 8). Nevertheless, the 
combined experimental and theoretical evidence 
clearly points to a value in the range of 0.12- 
0.17 x 10 -28 m 2. As more X-ray-determined charge 
densities on iron-containing solids are included in the 
analysis, the X-ray value will become more precise. 

Finally, we note that the experimental and theoretical 
densities provide an interpretation of the observed 
spectroscopic quadrupole splittings in terms of the 
detailed charge distribution in the solid. 

Support of this work by the National Science 
Foundation (CHE9317770) is gratefully acknowledged. 
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